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Multivariate Trigonometric B-Splines
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A relation between univariate trigonometric and polynomial B-splines is exten
ded to higher dimensions and used to construct a class of multivariate
trigonometric B-splines from the multivariate polynomial ones. These new functions
are trigonometric splines in each variable, but they are not tensor product splines.
They are smooth and have local non-polygonal support. They possess a recurrence
relation similar to that of the multivariate polynomial B-splines. © 1988 Academic

Press, Inc.

1. INTRODUCTION

In the next section we find a relation between univariate trigonometric
and polynomial B-splines. In Section 3 we extend this relation to higher
dimensions and use it to construct a class of multivariate trigonometric
B-splines from the multivariate polynomial ones. Some further
generalizations are given in Section 4.

Let us first recall some properties of univariate and multivariate
polynomial B-splines.

Denote the (unnormalized) univariate polynomial B-spline corre
sponding to the knots XO ~ Xl ~ •.. ~ x n by Q(·I xO, ..., x n). By
de Boor [1],

Q( I
° n)=(x-xO)Q(xlxo, ...,xn-I)+(xn-x)Q(xlxl, ...,xn) (1)

x x , ..., X xn _ XO

For n = 1,

XO~X<XI

otherwise.
(2)

The B-spline Q(·I xO, ... , x n) is positive on (xo, x n) and zero on ( - 00, xo) V

[x n, (0). On each subinterval (Xi, x i + I) it is an element of nn_1 (the space
of polynomials of degree ~ n - 1).
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We need some notation for the multivariate case. For any set A c Rn let
[A] and voll! A denote the closed convex hull and the n-dimensional
volume of A, respectively. Let sn={vo"",Vn)IL;l~ovj=l, "'j~O,

j = 0, ..., n} be the standard n-dimensional simplex. Let 7[;' be the space of
polynomials of total degree :s::; n in s variables.

We can now define the multivariate polynomial B-spline introduced in
de Boor [2]. Let n > s ~ I and let xO, ... , x" be any points in R' such that
volJxo, ... , x"] > 0. Let .~o, ..., il! be arbitrary vectors in R n

-- S for which the
denominator in (3) is positive. The multivariate polynomial B-spline,
M( ·1 xo. ... , xl!). corresponding to the knots xO, ..., xl! is defined by

I { - R"-5!( -) [' ° -0) In -n)]''1( 10 ")=vo ll _" XE X,X,E lX,X , ..."X,x, ;'
1V X X , ... , x ° ° 'vol,,[(x ,.~ ), ..., (xn, in)]

( " ,,)1

where we have chosen the normalization of MiccheUi [8J (cr. de Boor [2J,
Micchelli [7J). This B-spline is a member of n~ -5 in each region bounded
by, but not cut by the convex hull of any subsets of s points from
{XO, ..., x"}. If every subset of d points of {XO, ... , x/} forms a convex
set of positive volume then M(·lxo, ...,XI!)EC-d(RS

). So usually,
M(.!xo, ...,X")EC-s-l(R5). The support of this function is equal to
[XO, ..., x"]. If we define volo 0=0 and volo A = I when A -# 0, then we
can use (3) to define the multivariate B-spline even in the case n = s.

Micchelli [7] discovered a recurrence relation for the evaluation of (3).
Suppose that n > s and that vol,[xO, ... , .-rJ - 1, Xl + 1, ... , x"] > 0, j = 0...., n.
L t - "'" . I h) 1 t' f "'I! • -" If '1( lOon) •e X-L.j~olLj-"'(',W ere 'o, ...,Al!salsYL.l~OJ"I-L l' . X, ... , ... ,anG
Al( ·1 xO, ... , x j

- 1, x j + 1, ... , xl!), j = 0, ... , n, are continuous at x, then

n

M( 1
vo v") - _n_ '\ 1 M( x I v O vj - 1 yj + 1 ,(WJ

~X" .'\, , •.. ,.'\, . - ~ Aj ",.'\- ~ ... , .\. , ~" , ... , .. .
n-s,~O

An analog recurrence relation is given for the multivariate trigonometric
B-splines in Section 3.

To derive (4), Micchelli [7] used the following characterization of the
multivariate B-spline.

, I! )J.M(x1xo, ...,xl!)f(x)dx=nlf f(L: Vj)(J dvj···dvl!'
R' sn j~O

VfE C(RS).

(5 )

In Section 3 a formula resembling this is given for the trigonometric case.
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2. A CONNECTION BETWEEN UNIVARIATE TRIGONOMETRIC

AND POLYNOMIAL B-SPLINES

Lyche and Winther [6J defined univariate trigonometric B-splines of
arbitrary orders and showed that they possess the recurrence relation

T(xlxO, ..., x fl
)

sin(x- xO)/2 T(x 1 xO, ..., x n
-

I
) + sin(xfl -x)/2 T(xl Xl, ..., x n

)

sin(x fl
- x°)/2

(6)

Here T(·I xO, ..., x fl
) is the trigonometric B-spline corresponding to the

knots XO ~ Xl ~ ... ~ x fl
, where we suppose that x n

- XO < 2TC. For n = 1,

/

1/
' Xl _ X O

sm--
2
-,

T(xlxo,x
l
)= °

otherwise.

T(·I xo, ..., x n
) is positive on (xo, x n

) and is zero outside of [XO, x n ).

each subinterval (x.i, Xi + I) it is an element of r n _ I' where

(7)

On

1

span{I, sin x, cos x, ..., sin mx, cos mx},

r =
, x . Xl' 1

span{cos 2' sm 2' ..., cos(m + 2J x, sm(m + 2) x},

(cf. Lyche and Winther [6 J).
Another basis for r, is given by

r=2m

r=2m+ 1

(8)

i=O, ..., r. (9)

The following transformation will be important to us.

(yJ)(x) = cos' (~).f (tan~). (10)

Using cos'-i(x/2) sini(x/2)=cos'(x/2) tan i (x/2), i=O, ..., r, we see that y,
maps TC, onto r,. More accurately, if p E TC, on [tan(IX/2), tan(p/2), then
}', pEr, on [IX, f3), when - TC < IX < f3 < TC. The transformation (10) preserves
smoothness, so yn _ 1 Q( ·1 tan(xo/2), ..., tan(xn/2)) should be a trigonometric
spline. The following lemma tells us that it is proportional to the
trigonometric B-spline T(·I xO, ... , x n

).
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LEMMA. Let n E N and suppose that -n < XO ~ Xl ~ ... ~ X" < n. Then

T(x Ixo, ..., x")

COS/-1(X/2) ( XI XO xli')
=[1 (. 2) Q tan~ tan-

2
, ... , tan- ,

,/~ocosxJ/ L 2;

Proof The proof is by induction on n. The formula

X E ( - IT, n). ill)

tan A - tan B = sin(A - B)/(cos A . cos B) (12 )

will be useful. For n= 1, the definitions (2), (7), (10) combined with (12)
give (11). Suppose that (11) holds for n = m. Let n = m + 1. If }CO = x" then
both sides of (11) are identically zero. Suppose X

O < x fl
• By (l), (10), (12),

and the induction hypothesis, the right side of (11) equals the right side of
(6). Hence (11) holds for n = m + 1. I

By the lemma, we may use the more efficient recurrence relation (11 ) to
evaluate T(x!xo, ..., x n

), instead of using (6).

3. MULTIVARIATE TRIGONOMETRIC B-SPLINES

In this section we will construct smooth functions of local support which
are multivariate trigonometric polynomials in each subdomain. But first we
must specify what we mean by a multivariate trigonometric polynomial.

DEFINITION 1. Let s, n E N. Set

, )T. Xl X s
!(x)=(tan 2 , ..., tan 2

s y.

c(x)= n cos:...L
j~ 1 2

Define

x = (Xl' ... , X,)1 E (-n, rr)'. (13 )

1':,= {c".(pot)lpEn:,}, (14 )

where pot is the composite function of p and t.

By Definition 1,

1':, = span tOl (cosll-'J (i)· sin'! (i)) Ijt! Cf.J ~ n, Clj ? 0, j= 1, ..., s}.

(15)
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Here we have replaced Xji by the iXjth element in the sequence (9) of basis
functions for 'Il' Particularly, ,t, = Tn" For s ~ 1, ,;, is contained in the
tensor product of s copies of 'Il' By (14) we see that ,~ and 11:~ have the
same dimension. Thus even if ,:, is a space of trigonometric functions, it
possesses properties similar to those of rr~.

Let us now introduce the multivariate trigonometric B-splines.

DEFINITION 2. Let n ~ s and let xO, ... , x" E ( - 11:, rr y. Suppose that
vols[t(xo), ..., t(xn)] > O. Define

l
[c(x)y-s ° n

n j).M(t(x)lt(x), ...,t(X)),

T( 1
.0 n) Ili~o c(x,x x, ...,x = .

o

XE (-rr, 11:)'

otherwise,

(16 )

where c, t are given by Definition 1 and M(·I t(XO), ..., t(xn)) by (3).

By the lemma, (16) generalizes trigonometric B-splines.
The main result is the following:

THEOREM. Let n ~ s and let xO, ..., x n E ( - rr, rr y. Set / = t(xt
i = 0, , n. Suppose that vols[YO, ..., y"] > o. If every subset of d points of
{yO, , yn} forms a convex set of positive volume then T(·I xO, ..., xn) E

C"-d(R S
). For each region D bounded by, but not cut by the convex hull of

any subsets of s points from {yO, ..., yn}, T(·I xO, ..., x n) I,-I(D) E ':,_ s' Outside
t - 1 [yO, ..., y"], T(.I xO, ..., x n) is identically zero. Suppose that n > s + 1 and
that vols[yO, ...,/-I, yi+l, ...,y"]>O, i=O, ...,n. Let cp(x)=c(x)t(x),
x E ( - 11:, 11:)'. If the real numbers,0, ... , '" satisfy

"L 'iCP(X i) = cp(x),
i=O

"L 'iC(X i
) = c(x)

i=O

(17 )

and if T(·lxo, ... ,x") and T(·lxo, ...,xi- 1
, X

i+ 1
, •••,xn), i=O, ...,n, are

continuous at x, then

o 1Z n n 0 i-I i+ 1 nT(xlx , ...,X )=-- L ,;T(xlx , ...,x ,x , ...,x). (18)
n-si~O

Proof The idea behind the proof is to transform properties
of M(·I yO, ..., y") into properties for T('I xO, ... , x n) via Definition 2.
The statement about the smoothness of T(·I xO, ..., xn) follows from
what we know about the smoothness of M(·I yO, ..., y"). Also,
M(-I yO, ... , yn)I D E11::,_s' when D is one of those regions mentioned
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III the theorem. By Definitions 1 and 2, T( 'Ixo, ..., Xn)ll-l(D)Er~_s' Since
M( ·1 yO, , y") = 0 outside [yO, ... , yfl], T( ·1 xO, ..., x n

) = 0 outside
t -1 [yO, , ytl]. Let '0' ... , Tn satisfy (17). Set Ai = T;c(.-d/c(x), i = 0, ..., n. By
(17), L;I~oAi= 1 and L7~oAiy'=t(x). Hence (4) is fulfilled when Xl is
replaced by y' and x is replaced by t(x). Multiplying both sides of (4) by
c(x)"-s/n7~oc(x i ) and using Definition 2 we obtain (18). I

If the vectors xo, ..., x fl are in general position, then by the theorem.
d=s+l, so T(·lxO,oo.,xfl)Ecn-s-i(RS).

By setting 17 - s of To, ..., 'n equal to zero we may solve (17) uniquely for
the rest of '0' ... , Tn' As a function of x these T/S become elements of T~.

Using Definition 2 the characterization (5) transforms into

r T(x!xo, ...,xtl)f(x)dx=j' w(v)f(Xv)dvl···d\',,,
JR ~

where

'if E C( R'), (19)

(20)

and where XS" is the characteristic function on sn. Dahmen and Micchelli
[5, Eq. (2.1.4)] consider functions M satisfying (19) for different choices of
w. They always assume that X is an affine function. This is one of the main
differences.

In the same manner other properties of the multivariate polynomial
B-splines may be transformed into properties for the multivariate
trigonometric B-splines.

4. EXTENSIONS

The conclusions of the theorem hold for more general classes of mul
tivariate B-splines. In fact, since we did not use (13) explicitly in the proof
of the theorem, we may use any sufficiently smooth mappings t and c in
(14) defined on a common domain f2' in R S such that t is injective and c is
positive on that domain. We keep (14) as it is and only change (-n, n)'
into ;jJ in (16). The conclusions of the theorem are still true. As an exam
ple, we could use t(x)=(tanhx i , ... , tanhxJT, c(x)=n;~lcoshxJ'

x = (x 1, .... x s ) T E f?j = R S
, and obtain a multivariate hyperbolic B-spline (cf.

Schumaker [9] for the univariate case). More generally, we could mix
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cases and use one function class for one variable and a different one for
another variable.

Another generalization would be to use, for instance, the box spline in
(16) instead of the multivariate polynomial B-spline (see de Boor and
DeYore [3], de Boor and Hollig [4]). This would yield a theorem similar
to that in Section 3.
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