Multivariate Trigonometric B-Splines

PER ERIK KOCH

Institute of Informatics, University of Oslo, Oslo, Norway

Communicated by Charles K. Chui

Received October 25, 1985

A relation between univariate trigonometric and polynomial B-splines is extended to higher dimensions and used to construct a class of multivariate trigonometric B-splines from the multivariate polynomial ones. These new functions are trigonometric splines in each variable, but they are not tensor product splines. They are smooth and have local non-polygonal support. They possess a recurrence relation similar to that of the multivariate polynomial B-splines. © 1988 Academic Press, Inc.

1. Introduction

In the next section we find a relation between univariate trigonometric and polynomial *B*-splines. In Section 3 we extend this relation to higher dimensions and use it to construct a class of multivariate trigonometric *B*-splines from the multivariate polynomial ones. Some further generalizations are given in Section 4.

Let us first recall some properties of univariate and multivariate polynomial *B*-splines.

Denote the (unnormalized) univariate polynomial *B*-spline corresponding to the knots $x^0 \le x^1 \le \cdots \le x^n$ by $Q(\cdot|x^0, ..., x^n)$. By de Boor [1],

$$Q(x|x^{0},...,x^{n}) = \frac{(x-x^{0}) Q(x|x^{0},...,x^{n-1}) + (x^{n}-x) Q(x|x^{1},...,x^{n})}{x^{n}-x^{0}}.$$
 (1)

For n=1,

$$Q(x \mid x^{0}, x^{1}) = \begin{cases} 1/(x^{1} - x^{0}), & x^{0} \leq x < x^{1} \\ 0 & \text{otherwise.} \end{cases}$$
 (2)

The B-spline $Q(\cdot|x^0,...,x^n)$ is positive on (x^0,x^n) and zero on $(-\infty,x^0) \cup [x^n,\infty)$. On each subinterval (x^i,x^{i+1}) it is an element of π_{n-1} (the space of polynomials of degree $\leq n-1$).

We need some notation for the multivariate case. For any set $A \subset R^n$ let [A] and $\operatorname{vol}_n A$ denote the closed convex hull and the *n*-dimensional volume of A, respectively. Let $S^n = \{v_0, ..., v_n\} | \sum_{j=0}^n v_j = 1, v_j \ge 0, j = 0, ..., n\}$ be the standard *n*-dimensional simplex. Let π_n^s be the space of polynomials of total degree $\le n$ in s variables.

We can now define the multivariate polynomial *B*-spline introduced in de Boor [2]. Let $n > s \ge 1$ and let $x^0, ..., x^n$ be any points in R^s such that $\operatorname{vol}_s[x^0, ..., x^n] > 0$. Let $\tilde{x}^0, ..., \tilde{x}^n$ be arbitrary vectors in R^{n-s} for which the denominator in (3) is positive. The multivariate polynomial *B*-spline, $M(\cdot|x^0, ..., x^n)$, corresponding to the knots $x^0, ..., x^n$ is defined by

$$M(x|x^{0}, ..., x^{n}) = \frac{\operatorname{vol}_{n-s}\{\tilde{x} \in R^{n-s} | (x, \tilde{x}) \in [(x^{0}, \tilde{x}^{0}), ..., (x^{n}, \tilde{x}^{n})]\}}{\operatorname{vol}_{n}[(x^{0}, \tilde{x}^{0}), ..., (x^{n}, \tilde{x}^{n})]}, (3)$$

where we have chosen the normalization of Micchelli [8] (cf. de Boor [2], Micchelli [7]). This B-spline is a member of π_{n-s}^s in each region bounded by, but not cut by the convex hull of any subsets of s points from $\{x^0, ..., x^n\}$. If every subset of d points of $\{x^0, ..., x^n\}$ forms a convex set of positive volume then $M(\cdot|x^0, ..., x^n) \in C^{n-d}(R^s)$. So usually, $M(\cdot|x^0, ..., x^n) \in C^{n-s-1}(R^s)$. The support of this function is equal to $[x^0, ..., x^n]$. If we define $\operatorname{vol}_0 \emptyset = 0$ and $\operatorname{vol}_0 A = 1$ when $A \neq \emptyset$, then we can use (3) to define the multivariate B-spline even in the case n = s.

Micchelli [7] discovered a recurrence relation for the evaluation of (3). Suppose that n > s and that $\operatorname{vol}_s[x^0, ..., x^{j-1}, x^{j+1}, ..., x^n] > 0$, j = 0, ..., n. Let $x = \sum_{j=0}^n \lambda_j x^j$, where $\lambda_0, ..., \lambda_n$ satisfy $\sum_{j=0}^n \lambda_j = 1$. If $M(\cdot | x^0, ..., x^n)$ and $M(\cdot | x^0, ..., x^{j-1}, x^{j+1}, ..., x^n)$, j = 0, ..., n, are continuous at x, then

$$M(x|x^{0},...,x^{n}) = \frac{n}{n-s} \sum_{j=0}^{n} \lambda_{j} M(x|x^{0},...,x^{j-1},x^{j+1},...,x^{n}).$$
 (4)

An analog recurrence relation is given for the multivariate trigonometric *B*-splines in Section 3.

To derive (4), Micchelli [7] used the following characterization of the multivariate B-spline.

$$\int_{R^{s}} M(x \mid x^{0}, ..., x^{n}) f(x) dx = n! \int_{S^{n}} f\left(\sum_{j=0}^{n} v_{j} x^{j}\right) dv_{1} \cdots dv_{n}, \quad \forall f \in C(R^{s}).$$
(5)

In Section 3 a formula resembling this is given for the trigonometric case.

2. A CONNECTION BETWEEN UNIVARIATE TRIGONOMETRIC AND POLYNOMIAL B-SPLINES

Lyche and Winther [6] defined univariate trigonometric B-splines of arbitrary orders and showed that they possess the recurrence relation

$$T(x|x^{0}, ..., x^{n}) = \frac{\sin(x-x^{0})/2 \ T(x|x^{0}, ..., x^{n-1}) + \sin(x^{n}-x)/2 \ T(x|x^{1}, ..., x^{n})}{\sin(x^{n}-x^{0})/2}.$$
(6)

Here $T(\cdot|x^0, ..., x^n)$ is the trigonometric B-spline corresponding to the knots $x^0 \le x^1 \le \cdots \le x^n$, where we suppose that $x^n - x^0 < 2\pi$. For n = 1,

$$T(x \mid x^{0}, x^{1}) = \begin{cases} 1/\sin \frac{x^{1} - x^{0}}{2}, & x^{0} \leq x < x^{1} \\ 0 & \text{otherwise.} \end{cases}$$
 (7)

 $T(\cdot|x^0,...,x^n)$ is positive on (x^0,x^n) and is zero outside of $[x^0,x^n)$. On each subinterval (x^i,x^{i+1}) it is an element of τ_{n-1} , where

$$\tau_r = \begin{cases} \operatorname{span}\{1, \sin x, \cos x, ..., \sin mx, \cos mx\}, & r = 2m \\ \operatorname{span}\{\cos \frac{x}{2}, \sin \frac{x}{2}, ..., \cos(m + \frac{1}{2}) x, \sin(m + \frac{1}{2}) x\}, & r = 2m + 1 \end{cases}$$
 (8)

(cf. Lyche and Winther [6]).

Another basis for τ_r is given by

$$\cos^{r-i}\left(\frac{x}{2}\right) \cdot \sin^i\left(\frac{x}{2}\right), \qquad i = 0, ..., r.$$
(9)

The following transformation will be important to us.

$$(\gamma, f)(x) = \cos^r\left(\frac{x}{2}\right) \cdot f\left(\tan\frac{x}{2}\right).$$
 (10)

Using $\cos^{r-i}(x/2) \sin^i(x/2) = \cos^r(x/2) \tan^i(x/2)$, i=0,...,r, we see that γ_r maps π_r onto τ_r . More accurately, if $p \in \pi_r$ on $[\tan(\alpha/2), \tan(\beta/2), \tan(\beta/2), \tan(\beta/2), \tan(\beta/2), \tan(\beta/2), \sin(\beta/2), \sin(\beta/2), ..., \tan(x^n/2)]$ should be a trigonometric spline. The following lemma tells us that it is proportional to the trigonometric *B*-spline $T(\cdot | x^0, ..., x^n)$.

LEMMA. Let $n \in N$ and suppose that $-\pi < x^0 \le x^1 \le \cdots \le x^n < \pi$. Then

$$T(x | x^0, ..., x^n)$$

$$= \frac{\cos^{n-1}(x/2)}{\prod_{j=0}^{n} \cos(x^{j/2})} Q\left(\tan\frac{x}{2} \middle| \tan\frac{x^{0}}{2}, ..., \tan\frac{x^{n}}{2}\right), \qquad x \in (-\pi, \pi).$$
 (11)

Proof. The proof is by induction on n. The formula

$$\tan A - \tan B = \sin(A - B)/(\cos A \cdot \cos B) \tag{12}$$

will be useful. For n = 1, the definitions (2), (7), (10) combined with (12) give (11). Suppose that (11) holds for n = m. Let n = m + 1. If $x^0 = x^n$ then both sides of (11) are identically zero. Suppose $x^0 < x^n$. By (1), (10), (12), and the induction hypothesis, the right side of (11) equals the right side of (6). Hence (11) holds for n = m + 1.

By the lemma, we may use the more efficient recurrence relation (11) to evaluate $T(x | x^0, ..., x^n)$, instead of using (6).

3. Multivariate Trigonometric B-Splines

In this section we will construct smooth functions of local support which are multivariate trigonometric polynomials in each subdomain. But first we must specify what we mean by a multivariate trigonometric polynomial.

DEFINITION 1. Let $s, n \in \mathbb{N}$. Set

$$t(x) = \left(\tan\frac{x_1}{2}, ..., \tan\frac{x_s}{2}\right)^T, \qquad x = (x_1, ..., x_s)^T \in (-\pi, \pi)^s.$$
 (13)
$$c(x) = \prod_{j=1}^s \cos\frac{x_j}{2}$$

Define

$$\tau_n^s = \{ c^n \cdot (p \circ t) \mid p \in \pi_n^s \}, \tag{14}$$

where $p \circ t$ is the composite function of p and t.

By Definition 1.

$$\tau_n^s = \operatorname{span} \left\{ \prod_{j=1}^s \left(\cos^{n-\alpha_j} \left(\frac{x_j}{2} \right) \cdot \sin^{\alpha_j} \left(\frac{x_j}{2} \right) \right) \middle| \sum_{j=1}^s \alpha_j \leqslant n, \, \alpha_j \geqslant 0, \, j = 1, ..., s \right\}.$$
(15)

Here we have replaced $x_j^{\alpha_j}$ by the α_j th element in the sequence (9) of basis functions for τ_n . Particularly, $\tau_n^1 = \tau_n$. For $s \ge 1$, τ_n^s is contained in the tensor product of s copies of τ_n . By (14) we see that τ_n^s and π_n^s have the same dimension. Thus even if τ_n^s is a space of trigonometric functions, it possesses properties similar to those of π_n^s .

Let us now introduce the multivariate trigonometric B-splines.

DEFINITION 2. Let $n \ge s$ and let $x^0, ..., x^n \in (-\pi, \pi)^s$. Suppose that $\text{vol}_s[t(x^0), ..., t(x^n)] > 0$. Define

$$T(x|x^{0}, ..., x^{n}) = \begin{cases} \frac{\left[c(x)\right]^{n-s}}{\prod_{j=0}^{n} c(x^{j})} \cdot M(t(x)|t(x^{0}), ..., t(x^{n})), & x \in (-\pi, \pi)^{s} \\ 0 & \text{otherwise,} \end{cases}$$
(16)

where c, t are given by Definition 1 and $M(\cdot | t(x^0), ..., t(x^n))$ by (3).

By the lemma, (16) generalizes trigonometric B-splines.

The main result is the following:

Theorem. Let $n \ge s$ and let $x^0, ..., x^n \in (-\pi, \pi)^s$. Set $y^i = t(x^i)$, i = 0, ..., n. Suppose that $\operatorname{vol}_s[y^0, ..., y^n] > 0$. If every subset of d points of $\{y^0, ..., y^n\}$ forms a convex set of positive volume then $T(\cdot|x^0, ..., x^n) \in C^{n-d}(R^s)$. For each region D bounded by, but not cut by the convex hull of any subsets of s points from $\{y^0, ..., y^n\}$, $T(\cdot|x^0, ..., x^n)_{|t^{-1}(D)} \in \tau^s_{n-s}$. Outside $t^{-1}[y^0, ..., y^n]$, $T(\cdot|x^0, ..., x^n)$ is identically zero. Suppose that n > s + 1 and that $\operatorname{vol}_s[y^0, ..., y^{i-1}, y^{i+1}, ..., y^n] > 0$, i = 0, ..., n. Let $\varphi(x) = c(x) t(x)$, $x \in (-\pi, \pi)^s$. If the real numbers $\tau_0, ..., \tau_n$ satisfy

$$\sum_{i=0}^{n} \tau_{i} \varphi(x^{i}) = \varphi(x), \qquad \sum_{i=0}^{n} \tau_{i} c(x^{i}) = c(x)$$
 (17)

and if $T(\cdot|x^0, ..., x^n)$ and $T(\cdot|x^0, ..., x^{i-1}, x^{i+1}, ..., x^n)$, i = 0, ..., n, are continuous at x, then

$$T(x|x^0, ..., x^n) = \frac{n}{n-s} \sum_{i=0}^n \tau_i T(x|x^0, ..., x^{i-1}, x^{i+1}, ..., x^n).$$
 (18)

Proof. The idea behind the proof is to transform properties of $M(\cdot|y^0,...,y^n)$ into properties for $T(\cdot|x^0,...,x^n)$ via Definition 2. The statement about the smoothness of $T(\cdot|x^0,...,x^n)$ follows from what we know about the smoothness of $M(\cdot|y^0,...,y^n)$. Also, $M(\cdot|y^0,...,y^n)_{|D} \in \pi^s_{n-s}$, when D is one of those regions mentioned

in the theorem. By Definitions 1 and 2, $T(\cdot|x^0, ..., x^n)|_{t^{-i}(D)} \in \tau_{n-s}^s$. Since $M(\cdot|y^0, ..., y^n) = 0$ outside $[y^0, ..., y^n]$, $T(\cdot|x^0, ..., x^n) = 0$ outside $t^{-1}[y^0, ..., y^n]$. Let $\tau_0, ..., \tau_n$ satisfy (17). Set $\lambda_i = \tau_i c(x^i)/c(x)$, i = 0, ..., n. By (17), $\sum_{i=0}^n \lambda_i = 1$ and $\sum_{i=0}^n \lambda_i y^i = t(x)$. Hence (4) is fulfilled when x^i is replaced by y^i and x is replaced by t(x). Multiplying both sides of (4) by $c(x)^{n-s}/\prod_{i=0}^n c(x^i)$ and using Definition 2 we obtain (18).

If the vectors x^0 , ..., x^n are in general position, then by the theorem, d = s + 1, so $T(\cdot | x^0, ..., x^n) \in C^{n-s-1}(R^s)$.

By setting n-s of τ_0 , ..., τ_n equal to zero we may solve (17) uniquely for the rest of τ_0 , ..., τ_n . As a function of x these τ_j 's become elements of τ_1^s . Using Definition 2 the characterization (5) transforms into

$$\int_{R^{n}} T(x \mid x^{0}, ..., x^{n}) f(x) dx = \int_{R^{n}} \omega(v) f(Xv) dv_{1} \cdots dv_{n}, \quad \forall f \in C(R^{s}), (19)$$

where

$$\omega(v) = \frac{2^{s} \cdot n!}{\prod_{j=0}^{n} c(x^{j})} \cdot c \left(t^{-1} \left(\sum_{i=0}^{n} v_{i} t(x^{i}) \right) \right)^{n-s+2} \cdot \chi_{S^{n}}(v),$$

$$Xv = t^{-1} \left(\sum_{i=0}^{n} v_{i} t(x^{i}) \right),$$
(20)

and where χ_{S^n} is the characteristic function on S^n . Dahmen and Micchelli [5, Eq. (2.1.4)] consider functions M satisfying (19) for different choices of ω . They always assume that χ is an affine function. This is one of the main differences.

In the same manner other properties of the multivariate polynomial *B*-splines may be transformed into properties for the multivariate trigonometric *B*-splines.

4. EXTENSIONS

The conclusions of the theorem hold for more general classes of multivariate *B*-splines. In fact, since we did not use (13) explicitly in the proof of the theorem, we may use any sufficiently smooth mappings t and c in (14) defined on a common domain \mathcal{D} in R^s such that t is injective and c is positive on that domain. We keep (14) as it is and only change $(-\pi, \pi)^s$ into \mathcal{D} in (16). The conclusions of the theorem are still true. As an example, we could use $t(x) = (\tanh x_1, ..., \tanh x_s)^T$, $c(x) = \prod_{j=1}^s \cosh x_j$, $x = (x_1, ..., x_s)^T \in \mathcal{D} = R^s$, and obtain a multivariate hyperbolic *B*-spline (cf. Schumaker [9] for the univariate case). More generally, we could mix

cases and use one function class for one variable and a different one for another variable.

Another generalization would be to use, for instance, the box spline in (16) instead of the multivariate polynomial *B*-spline (see de Boor and DeVore [3], de Boor and Höllig [4]). This would yield a theorem similar to that in Section 3.

REFERENCES

- 1. C. DE BOOR, On calculating with B-splines, J. Approx. Theory 6 (1972), 50-62.
- C. DE BOOR, Splines as linear combinations of B-splines, in "Approximation Theory II" (G. G. Lorentz, C. K. Chui, and L. L. Schumaker, Eds.), pp. 1–47, Academic Press, New York, 1976.
- C. DE BOOR AND R. DEVORE, Approximation by smooth multivariate splines, Trans. Amer. Math. Soc. 276 (1983), 775–788.
- C. DE BOOR AND K. HÖLLIG, B-splines from parallelepipeds, J. Analyse Math. 42 (1982/1983), 99-115.
- 5. W. Dahmen and C. A. Micchelli, Recent progress in multivariate splines, in "Approximation Theory IV" (C. K. Chui, L. L. Schumaker, and J. W. Ward, Eds.), Academic Press, New York, 1984.
- 6. T. LYCHE AND R. WINTHER, A stable recurrence relation for trigonometric B-splines, J. Approx. Theory 25 (1979), 266–279.
- C. A. Micchelli, A constructive approach to Kergin interpolation in R^k: Multivariate B-splines and Lagrange interpolation, Rocky Mountain J. Math. 10 (1980), 485-497.
- 8. C. A. MICCHELLI, On a numerically efficient method for computing multivariate *B*-splines, in "Multivariate Approximation Theory" (W. Schempp and K. Zeller, Eds.), pp. 211–248, Birkhäuser, Basel, 1979.
- 9. L. L. SCHUMAKER, On hyperbolic splines, J. Approx. Theory 38 (1983), 144-166.