Multivariate Trigonometric B-Splines

Per Erik Koch
Institute of Informatics, University of Oslo, Oslo, Norway
Communicated by Charles K. Chui

Received October 25, 1985

Abstract

A relation between univariate trigonometric and polynomial B-splines is extended to higher dimensions and used to construct a class of multivariate trigonometric B-splines from the multivariate polynomial ones. These new functions are trigonometric splines in each variable, but they are not tensor product splines. They are smooth and have local non-polygonal support. They possess a recurrence relation similar to that of the multivariate polynomial B-splines. 1988 Academic Press, Inc.

1. Introduction

In the next section we find a relation between univariate trigonometric and polynomial B-splines. In Section 3 we extend this relation to higher dimensions and use it to construct a class of multivariate trigonometric B-splines from the multivariate polynomial ones. Some further generalizations are given in Section 4.

Let us first recall some properties of univariate and multivariate polynomial B-splines.

Denote the (unnormalized) univariate polynomial B-spline corresponding to the knots $x^{0} \leqslant x^{1} \leqslant \cdots \leqslant x^{n}$ by $Q\left(\cdot \mid x^{0}, \ldots, x^{n}\right)$. By de Boor [1],

$$
\begin{equation*}
Q\left(x \mid x^{0}, \ldots, x^{n}\right)=\frac{\left(x-x^{0}\right) Q\left(x \mid x^{0}, \ldots, x^{n-1}\right)+\left(x^{n}-x\right) Q\left(x \mid x^{1}, \ldots, x^{n}\right)}{x^{n}-x^{0}} \tag{1}
\end{equation*}
$$

For $n=1$,

$$
Q\left(x \mid x^{0}, x^{1}\right)= \begin{cases}1 /\left(x^{1}-x^{0}\right), & x^{0} \leqslant x<x^{1} \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

The B-spline $Q\left(\cdot \mid x^{0}, \ldots, x^{n}\right)$ is positive on $\left(x^{0}, x^{n}\right)$ and zero on $\left(-\infty, x^{0}\right) \cup$ $\left[x^{n}, \infty\right)$. On each subinterval (x^{i}, x^{i+1}) it is an element of π_{n-1} (the space of polynomials of degree $\leqslant n-1$).

We need some notation for the multivariate case. For any set $A \subset R^{n}$ let [A] and $\operatorname{vol}_{n} A$ denote the closed convex hull and the n-dimensional volume of A, respectively. Let $S^{n}=\left\{v_{0}, \ldots, v_{n}\right) \mid \sum_{j=0}^{n} v_{j}=1, v_{j} \geqslant 0$, $j=0, \ldots, n\}$ be the standard n-dimensional simplex. Let π_{n}^{ε} be the space of polynomials of total degree $\leqslant n$ in s variables.

We can now define the multivariate polynomial B-spline introduced in de Boor [2]. Let $n>s \geqslant 1$ and let x^{0}, \ldots, x^{n} be any points in R^{s} such that vol, $\left[x^{0}, \ldots, x^{n}\right]>0$. Let $\tilde{x}^{0}, \ldots, \tilde{x}^{n}$ be arbitrary vectors in R^{n-s} for which the denominator in (3) is positive. The multivariate polynomial B-spline, $M\left(\cdot \mid x^{0} \ldots, x^{n}\right)$. corresponding to the knots x^{0}, \ldots, x^{n} is defined by

$$
\begin{equation*}
M\left(x \mid x^{0}, \ldots, x^{n}\right)=\frac{\operatorname{vol}_{n-s}\left\{\tilde{x} \in R^{n-s} \mid(x, \tilde{x}) \in\left[\left(x^{0}, \tilde{x}^{0}\right), \ldots,\left(x^{n}, \tilde{x}^{n}\right)\right]\right\}}{\operatorname{vol}_{n}\left[\left(x^{0}, \tilde{x}^{0}\right), \ldots,\left(x^{n}, \tilde{x}^{n}\right)\right]} \tag{3}
\end{equation*}
$$

where we have chosen the normalization of Micchelli [8] (cf. de Boor [2], Micchelli [7]). This B-spline is a member of $\pi_{n-,}^{s}$ in each region bounded by, but not cut by the convex hull of any subsets of s points from $\left\{x^{0}, \ldots, x^{n}\right\}$. If every subset of d points of $\left\{x^{0}, \ldots, x^{n}\right\}$ forms a convex set of positive volume then $M\left(\cdot \mid x^{0}, \ldots, x^{n}\right) \in C^{n-d}\left(R^{s}\right)$. So usually, $M\left(\cdot \mid x^{0}, \ldots, x^{n}\right) \in C^{n-s-1}\left(R^{s}\right)$. The support of this function is equal to $\left[x^{0}, \ldots, x^{n}\right]$. If we define $\operatorname{vol}_{0} \varnothing=0$ and $\operatorname{vol}_{0} A=1$ when $A \neq \varnothing$, then we can use (3) to define the multivariate B-spline even in the case $n=s$.

Micchelli [7] discovered a recurrence relation for the evaluation of (3). Suppose that $n>s$ and that $\operatorname{vol}_{s}\left[x^{0}, \ldots, x^{j-1}, x^{j+1}, \ldots, x^{n}\right]>0, j=0 \ldots, n$. Let $x=\sum_{j=0}^{n} \lambda_{j} x^{j}$, where $\lambda_{0}, \ldots, \lambda_{n}$ satisfy $\sum_{j=0}^{n} \lambda_{j}=1$. If $M\left(\cdot \mid x^{0}, \ldots, x^{n}\right)$ and $M\left(\cdot \mid x^{0}, \ldots, x^{j-1}, x^{j+1}, \ldots, x^{n}\right), j=0, \ldots, n$, are continuous at x, then

$$
\begin{equation*}
M\left(x \mid x^{0}, \ldots, x^{n}\right)=\frac{n}{n-s} \sum_{j=0}^{n} \lambda_{j} M\left(x \mid x^{0}, \ldots, x^{j-1}, x^{j+1}, \ldots, x^{n}\right) \tag{4}
\end{equation*}
$$

An analog recurrence relation is given for the multivariate trigonometric B-splines in Section 3.

To derive (4), Micchelli [7] used the following characterization of the multivariate B-spline.

$$
\begin{equation*}
\int_{R^{3}} M\left(x \mid x^{0}, \ldots, x^{n}\right) f(x) d x=n!\int_{S^{n}} f\left(\sum_{j=0}^{n} v_{j} x^{j}\right) d v_{1} \cdots d v_{n}, \quad \forall f \in C\left(R^{s}\right) \tag{5}
\end{equation*}
$$

In Section 3 a formula resembling this is given for the trigonometric case.

2. A Connection Between Univariate Trigonometric and Polynomial B-Splines

Lyche and Winther [6] defined univariate trigonometric B-splines of arbitrary orders and showed that they possess the recurrence relation

$$
\begin{align*}
& T\left(x \mid x^{0}, \ldots, x^{n}\right) \\
& \quad=\frac{\sin \left(x-x^{0}\right) / 2 T\left(x \mid x^{0}, \ldots, x^{n-1}\right)+\sin \left(x^{n}-x\right) / 2 T\left(x \mid x^{1}, \ldots, x^{n}\right)}{\sin \left(x^{n}-x^{0}\right) / 2} . \tag{6}
\end{align*}
$$

Here $T\left(\cdot \mid x^{0}, \ldots, x^{n}\right)$ is the trigonometric B-spline corresponding to the knots $x^{0} \leqslant x^{i} \leqslant \cdots \leqslant x^{n}$, where we suppose that $x^{n}-x^{0}<2 \pi$. For $n=1$,

$$
T\left(x \mid x^{0}, x^{1}\right)= \begin{cases}1 / \sin \frac{x^{1}-x^{0}}{2}, & x^{0} \leqslant x<x^{1} \tag{7}\\ 0 & \text { otherwise }\end{cases}
$$

$T\left(\cdot \mid x^{0}, \ldots, x^{n}\right)$ is positive on (x^{0}, x^{n}) and is zero outside of $\left[x^{0}, x^{n}\right)$. On each subinterval $\left(x^{i}, x^{i+1}\right)$ it is an element of τ_{n-1}, where
$\tau_{r}= \begin{cases}\operatorname{span}\{1, \sin x, \cos x, \ldots, \sin m x, \cos m x\}, & r=2 m \\ \operatorname{span}\left\{\cos \frac{x}{2}, \sin \frac{x}{2}, \ldots, \cos \left(m+\frac{1}{2}\right) x, \sin \left(m+\frac{1}{2}\right) x\right\}, & r=2 m+1\end{cases}$
(cf. Lyche and Winther [6]).
Another basis for τ_{r} is given by

$$
\begin{equation*}
\cos ^{r-i}\left(\frac{x}{2}\right) \cdot \sin ^{i}\left(\frac{x}{2}\right), \quad i=0, \ldots, r . \tag{9}
\end{equation*}
$$

The following transformation will be important to us.

$$
\begin{equation*}
\left(\gamma_{r} f\right)(x)=\cos ^{r}\left(\frac{x}{2}\right) \cdot f\left(\tan \frac{x}{2}\right) . \tag{10}
\end{equation*}
$$

Using $\cos ^{r-i}(x / 2) \sin ^{i}(x / 2)=\cos ^{r}(x / 2) \tan ^{i}(x / 2), i=0, \ldots, r$, we see that γ_{r} maps π_{r} onto τ_{r}. More accurately, if $p \in \pi_{r}$ on $[\tan (\alpha / 2), \tan (\beta / 2)$, then $\gamma_{r} p \in \tau_{r}$ on $[\alpha, \beta$), when $-\pi<\alpha<\beta<\pi$. The transformation (10) preserves smoothness, so $\gamma_{n-1} Q\left(\cdot \mid \tan \left(x^{0} / 2\right), \ldots, \tan \left(x^{n} / 2\right)\right)$ should be a trigonometric spline. The following lemma tells us that it is proportional to the trigonometric B-spline $T\left(\cdot \mid x^{0}, \ldots, x^{n}\right)$.

Lemma. Let $n \in N$ and suppose that $-\pi<x^{0} \leqslant x^{1} \leqslant \cdots \leqslant x^{n}<\pi$. Then

$$
\begin{align*}
& T\left(x \mid x^{0}, \ldots, x^{n}\right) \\
& \quad=\frac{\cos ^{n-1}(x / 2)}{\prod_{j=0}^{n} \cos \left(x^{j} / 2\right)} Q\left(\tan \frac{x}{2} \left\lvert\, \tan \frac{x^{0}}{2}\right., \ldots, \tan \frac{x^{n}}{2}\right), \quad x \in(-\pi, \pi) \tag{11}
\end{align*}
$$

Proof. The proof is by induction on n. The formula

$$
\begin{equation*}
\tan A-\tan B=\sin (A-B) /(\cos A \cdot \cos B) \tag{12}
\end{equation*}
$$

will be useful. For $n=1$, the definitions (2), (7), (10) combined with (12) give (11). Suppose that (11) holds for $n=m$. Let $n=m+1$. If $x^{0}=x^{n}$ then both sides of (11) are identically zero. Suppose $x^{0}<x^{n}$. By (1), (10), (12), and the induction hypothesis, the right side of (11) equals the right side of (6). Hence (11) holds for $n=m+1$.

By the lemma, we may use the more efficient recurrence relation (11) to evaluate $T\left(x \mid x^{0}, \ldots, x^{n}\right)$, instead of using (6).

3. Multivariate Trigonometric B-Splines

In this section we will construct smooth functions of local support which are multivariate trigonometric polynomials in each subdomain. But first we must specify what we mean by a multivariate trigonometric polynomial.

Definition 1. Let $s, n \in N$. Set

$$
\begin{align*}
& t(x)=\left(\tan \frac{x_{1}}{2}, \ldots, \tan \frac{x_{s}}{2}\right)^{T} \tag{13}\\
& c(x)=\prod_{j=1}^{s} \cos \frac{x_{j}}{2}
\end{align*}
$$

Define

$$
\begin{equation*}
\tau_{n}^{s}=\left\{c^{n} \cdot(p \circ t) \mid p \in \pi_{n}^{s}\right\}, \tag{14}
\end{equation*}
$$

where $p \circ t$ is the composite function of p and t.
By Definition 1,

$$
\begin{equation*}
\tau_{n}^{s}=\operatorname{span}\left\{\left.\prod_{j=1}^{s}\left(\cos ^{n-x_{j}}\left(\frac{x_{j}}{2}\right) \cdot \sin ^{x_{j}}\left(\frac{x_{j}}{2}\right)\right) \right\rvert\, \sum_{j=1}^{s} \alpha_{j} \leqslant n, \alpha_{j} \geqslant 0, j=1, \ldots, s\right\} \tag{15}
\end{equation*}
$$

Here we have replaced $x_{j}^{\alpha_{j}}$ by the α_{j} th element in the sequence (9) of basis functions for τ_{n}. Particularly, $\tau_{n}^{1}=\tau_{n}$. For $s \geqslant 1, \tau_{n}^{s}$ is contained in the tensor product of s copies of τ_{n}. By (14) we see that τ_{n}^{s} and π_{n}^{s} have the same dimension. Thus even if τ_{n}^{s} is a space of trigonometric functions, it possesses properties similar to those of π_{n}^{s}.

Let us now introduce the multivariate trigonometric B-splines.
Definition 2. Let $n \geqslant s$ and let $x^{0}, \ldots, x^{n} \in(-\pi, \pi)^{s}$. Suppose that $\operatorname{vol}_{s}\left[t\left(x^{0}\right), \ldots, t\left(x^{n}\right)\right]>0$. Define

$$
T\left(x \mid x^{0}, \ldots, x^{n}\right)= \begin{cases}\frac{[c(x)]^{n-s}}{\prod_{i=0}^{n} c\left(x^{j}\right)} \cdot M\left(t(x) \mid t\left(x^{0}\right), \ldots, t\left(x^{n}\right)\right), & x \in(-\pi, \pi)^{s} \tag{16}\\ 0 & \text { otherwise }\end{cases}
$$

where c, t are given by Definition 1 and $M\left(\cdot \mid t\left(x^{0}\right), \ldots, t\left(x^{n}\right)\right)$ by (3).
By the lemma, (16) generalizes trigonometric B-splines.
The main result is the following:
Theorem. Let $n \geqslant s$ and let $x^{0}, \ldots, x^{n} \in(-\pi, \pi)^{s}$. Set $y^{i}=t\left(x^{i}\right)$, $i=0, \ldots, n$. Suppose that $\operatorname{vol}_{s}\left[y^{0}, \ldots, y^{n}\right]>0$. If every subset of d points of $\left\{y^{0}, \ldots, y^{n}\right\}$ forms a convex set of positive volume then $T\left(\cdot \mid x^{0}, \ldots, x^{n}\right) \in$ $C^{n-d}\left(R^{s}\right)$. For each region D bounded by, but not cut by the convex hull of any subsets of s points from $\left\{y^{0}, \ldots, y^{n}\right\}, T\left(\cdot \mid x^{0}, \ldots, x^{n}\right)_{i^{-1}(D)} \in \tau_{n-s}^{s}$. Outside $t^{-1}\left[y^{0}, \ldots, y^{n}\right], T\left(\cdot \mid x^{0}, \ldots, x^{n}\right)$ is identically zero. Suppose that $n>s+1$ and that $\operatorname{vol}_{s}\left[y^{0}, \ldots, y^{i-1}, y^{i+1}, \ldots, y^{n}\right]>0, i=0, \ldots, n$. Let $\varphi(x)=c(x) t(x)$, $x \in(-\pi, \pi)^{s}$. If the real numbers $\tau_{0}, \ldots, \tau_{n}$ satisfy

$$
\begin{equation*}
\sum_{i=0}^{n} \tau_{i} \varphi\left(x^{i}\right)=\varphi(x), \quad \sum_{i=0}^{n} \tau_{i} c\left(x^{i}\right)=c(x) \tag{17}
\end{equation*}
$$

and if $T\left(\cdot \mid x^{0}, \ldots, x^{n}\right)$ and $T\left(\cdot \mid x^{0}, \ldots, x^{i-1}, x^{i+1}, \ldots, x^{n}\right), i=0, \ldots, n$, are continuous at x, then

$$
\begin{equation*}
T\left(x \mid x^{0}, \ldots, x^{n}\right)=\frac{n}{n-s} \sum_{i=0}^{n} \tau_{i} T\left(x \mid x^{0}, \ldots, x^{i-1}, x^{i+1}, \ldots, x^{n}\right) \tag{18}
\end{equation*}
$$

Proof. The idea behind the proof is to transform properties of $M\left(\cdot \mid y^{0}, \ldots, y^{n}\right)$ into properties for $T\left(\cdot \mid x^{0}, \ldots, x^{n}\right)$ via Definition 2. The statement about the smoothness of $T\left(\cdot \mid x^{0}, \ldots, x^{n}\right)$ follows from what we know about the smoothness of $M\left(\cdot \mid y^{0}, \ldots, y^{n}\right)$. Also, $M\left(\cdot \mid y^{0}, \ldots, y^{n}\right)_{\mid D} \in \pi_{n-s}^{s}$, when D is one of those regions mentioned
in the theorem. By Definitions 1 and 2, $T\left(\cdot \mid x^{0}, \ldots, x^{n}\right)_{\mid-t^{-}\left(q_{1}\right)} \in \tau_{n-s}^{s}$. Since $M\left(\cdot \mid y^{0}, \ldots, y^{n}\right)=0 \quad$ outside $\quad\left[y^{0}, \ldots, y^{n}\right], \quad T\left(\cdot \mid x^{0}, \ldots, x^{n}\right)=0 \quad$ outside $t^{-1}\left[y^{0}, \ldots, y^{n}\right]$. Let $\tau_{0}, \ldots, \tau_{n}$ satisfy (17). Set $\lambda_{i}=\tau_{i} c\left(x^{i}\right) / c(x), i=0, \ldots, n$. By (17), $\sum_{i=0}^{n} \lambda_{i}=1$ and $\sum_{i=0}^{n} \lambda_{i} y^{t}=t(x)$. Hence (4) is fulfilled when x^{t} is replaced by y^{\prime} and x is replaced by $t(x)$. Multiplying both sides of (4) by $c(x)^{n-s} \prod_{i=0}^{\prime \prime} c\left(x^{j}\right)$ and using Definition 2 we obtain (18).

If the vectors x^{0}, \ldots, x^{n} are in general position, then by the theorem. $d=s+1$, so $T\left(\cdot \mid x^{0}, \ldots, x^{n}\right) \in C^{n-s-1}\left(R^{s}\right)$.

By setting $n-s$ of $\tau_{0}, \ldots, \tau_{n}$ equal to zero we may solve (17) uniquely for the rest of $\tau_{0}, \ldots, \tau_{n}$. As a function of x these τ_{j} 's become elements of τ_{1}.

Using Definition 2 the characterization (5) transforms into

$$
\begin{equation*}
\int_{R^{\cdot}} T\left(x \mid x^{0}, \ldots, x^{n}\right) f(x) d x=\int_{R^{n}} \omega(v) f(X v) d v_{1} \cdots d v_{n}, \quad \forall f \in C\left(R^{s}\right), \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
\omega(v) & =\frac{2^{j} \cdot n!}{\prod_{j=0}^{n} c\left(x^{j}\right)} \cdot c\left(t^{-1}\left(\sum_{i=3}^{n} v_{i} t\left(x^{i}\right)\right)\right)^{n-s+2} \cdot \chi_{s^{n}}(v), \tag{20}\\
X v & =t^{-1}\left(\sum_{i=0}^{n} v_{i} t\left(x^{i}\right)\right),
\end{align*}
$$

and where $\chi_{s^{n}}$ is the characteristic function on S^{n}. Dahmen and Micchelli [5, Eq. (2.1.4)] consider functions M satisfying (19) for different choices of ω. They always assume that χ is an affine function. This is one of the main differences.

In the same manner other properties of the multivariate polynomial B-splines may be transformed into properties for the multivariate trigonometric B-splines.

4. Extensions

The conclusions of the theorem hold for more general classes of muitivariate B-splines. In fact, since we did not use (13) explicitly in the proof of the theorem, we may use any sufficiently smooth mappings t and c in (14) defined on a common domain \mathscr{D} in R^{s} such that t is injective and c is positive on that domain. We keep (14) as it is and only change $(-\pi, \pi)^{0}$ into \mathscr{T} in (16). The conclusions of the theorem are still true. As an exampie, we could use $t(x)=\left(\tanh x_{1}, \ldots, \quad \tanh x_{s}\right)^{T}, \quad c(x)=\prod_{j=1}^{s} \cosh x_{y}$, $x=\left(x_{1}, \ldots, x_{s}\right)^{T} \in \mathscr{Z}=R^{s}$, and obtain a multivariate hyperbolic B-spline (cf. Schumaker [9] for the univariate case). More generally, we could mix
cases and use one function class for one variable and a different one for another variable.

Another generalization would be to use, for instance, the box spline in (16) instead of the multivariate polynomial B-spline (see de Boor and DeVore [3], de Boor and Höllig [4]). This would yield a theorem similar to that in Section 3.

References

1. C. De Boor, On calculating with B-splines, J. Approx. Theory 6 (1972), 50-62.
2. C. De Boor, Splines as linear combinations of B-splines, in "Approximation Theory II" (G. G. Lorentz, C. K. Chui, and L. L. Schumaker, Eds.), pp. 1-47, Academic Press, New York, 1976.
3. C. De Boor and R. DeVore, Approximation by smooth multivariate splines, Trans. Amer. Math. Soc. 276 (1983), 775-788.
4. C. De Boor and K. Höllig, B-splines from parallelepipeds, J. Analyse Math. 42 (1982/1983), 99-115.
5. W. Dahmen and C. A. Micchelli, Recent progress in multivariate splines, in "Approximation Theory IV" (C. K. Chui, L. L. Schumaker, and J. W. Ward, Eds.), Academic Press, New York, 1984.
6. T. Lyche and R. Winther, A stable recurrence relation for trigonometric B-splines, J. Approx. Theory 25 (1979), 266-279.
7. C. A. Micchelli, A constructive approach to Kergin interpolation in R^{k} : Multivariate B-splines and Lagrange interpolation, Rocky Mountain J. Math. 10 (1980), 485-497.
8. C. A. Micchelli, On a numerically efficient method for computing multivariate B-splines, in "Multivariate Approximation Theory" (W. Schempp and K. Zeller, Eds.), pp. 211-248, Birkhäuser, Basel, 1979.
9. L. L. Schumaker, On hyperbolic splines, J. Approx. Theory 38 (1983), 144-166.
